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Abstract

The purpose of this work is to introduce Lorentzian a-Sasakian manifolds to the concept of an
extended w,-curvature tensor. This study’s findings include the demonstration of an extended Lorentzian
a-Sasakian manifold that satisfies certain requirements for the w,-curvature tensor. First we demonstrated
that, it is local isometric to the hyperbolic space because a Lorentzian a-Sasakian manifold satisfying
w, = 0 is a space with constant curvature —1. Further, we proved that, Einstein manifolds are w,-
semisymmetric Lorentzian a-Sasakian M manifolds. Additionally we validated that, the hyperbolic space
is locally isometric to a w,-semisymmetric Lorentzian a-Sasakian manifold, that is a space with constant
curvature of —1. Additionally, we gathered data on an Einstein manifold isa M thatisa B(X,Y) -w, =0
satisfying Lorentzian a-Sasakian manifold, a M Lorentzian a-Sasakianmanifold that satisfies the
C(X,Y)-w, = 0 condition is an Einstein manifold and Einstein manifolds are Lorentzian a-Sasakian
manifolds that meet the equationP (X,Y) -w, = 0.
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Introduction

Pokhariyal and Mishra [9] introduced the w,-curvature tensor, a novel type of curvature tensor, in
a Riemannian manifold in the year 1770 and researched its features. Pokhariyal [10] has also investigated
some of the characteristics of this curvature tensor in a Sasakian manifold. In P-Sasakian, Kenmotsu and
Lorentzian para-Sasakian manifolds, w,-curvature tensor has been explored by Matsumoto, lanu and
Mihai [12], Ahmet Yildiz and U.C. De [21] and Venkatesha, C.S. Bagewadi et al [20], respectively. S.
Tanno classified associated almost contact metric manifolds with the largest automorphism grou in [17].
The sectional curvature of a plane section containing such a manifold is a constant, let’s say ¢ He showed
how they can be classified into three groups:

Riemannian manifolds with homogeneous normal contact and ¢ > 0;

In the condition that ¢ = 0, global Riemannian products of a line or circle with a Kaehler

Manifold with constant holomorphic sectional curvature;

If ¢ > 0, awarped product space calculated as R x C. The class (1) manifolds are distinguished by

admitting a Sasakian structure, as is well known.

A class of nearly Hermitian manifolds [6],w,, that is strongly connected to locally conformal Kaehler
manifolds [3] appears in the Gray-Hervella classification of almost Hermitian manifolds. A trans-
Sasakian structure [16] is a nearly contact metric structure on a manifold M if the product manifold M x
R belongs to the class w,. The class of the trans-Sasakian structures of (a, )

coincides with the class Co,®Cs ([14], [15]). In fact, the local nature of the two subclasses of trans-
Sasakian structures, namely Cs and C, structures, is fully defined in [15]. We point out that the
cosymplectic [1], B-Kenmotsu [8] and a-Sasakian [8], respectively, are trans-Sasakian structures of type
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(0,0), (0,B) and (a, 0). It is established in [18] that trans-Sasakian structures are generalized quasi-
Sasakian structures. As a result, a wide variety of generalized quasi-Sasakian structures are also provided

by trans-Sasakian structures.
If M x R belongs to the class w, [6] and ] is the almost complex structure on M X R defined by

(M X R, ], G) [16], then the almost contact metric structure (¢, ¢,1n,g) on M
a a
J(%.55) = (ox - £,22%). (1.1)

’dt
The product metric on M X R is G for all vector fields X on M and smooth functions f onM X R.
This might be stated using the condition [2]
(Vxd)Y = a(g(X,Y) —n(V)X) + B(g(¢X,Y) —n(¥)pX)), (1.2)

For certain smooth functions (a, 8) and (B, @) on M, we say that the trans-Sasakian structure is of type
(a, B). A trans-Sasakian structure of type («, ) is a-Sasakian if f = 0 and « is a non-zero Constant
[7]. The a-Sasakian manifold is a Sasakian manifold if « = 1.

Preliminaries

The term”differentiable manifold of dimension n”. If it admits a Lorentzian a-Sasakian
manifold, a contravariant vector field named¢, a (1,1)-tensor field named ¢ and a Lorentzian metric g
covariant vector field n satisfy ([22], [13])

n) =-1, (2.1)

¢ > =X +n(X)s, (2.2)
9(@X,¢Y) = g(X,Y) + n(Xn(Y), (2.3)
9(X, &) =nX), (2.4)
¢ =0, n(@Xx) =0, (2.5)

Forevery X,Y € TM.
A Lorentzian a-Sasakian manifold M [4] also satisfies the condition
V& = —agX, (2. 6)
(Vi)Y = —ag(¢X.Y), (2.7)
Where the covariant differentiation operator with respect to the Lorentzian metric g is denoted by V.
The following relations hold on Lorentzian a-Sasakian manifold M as well:

R(X,Y)Z = a?*{g(Y,2)X — g(X,Z)Y}, (2.8)
RX,Y)¢ = a’{n(Y)X —n(X)Y}, (2.9)
R, X)Y = a*{g(X,Y)§ —n(N)X}, (2.10)
R(§,X)§ = a®{n(X)¢ + X3, (2.11)
S(X,§) = (n - Da*n(X), (2.12)
Q¢ = (n— Da?¢, (2.13)

S(@X,¢Y) =S(X,¥) + (n — Da’n(X)n(Y), (2.14)
Where S is the Ricci tensor and Q is the Ricci operator provided by, for any vector fields X,Y and Z.
SX,Y) =ag(X,Y), (2.15)
Any vector field X, any vector field Y and « is a function on M.
The definition of the curvature tensor w, by Pokhariyal and Mishra [9] is given in the

[9(X, )S(Y,V) — g (Y, U)S(X, V)], (2.16)

1
(n-1)

w,(X,Y,U,V)=R(X,Y,U,V) +
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Where S is a Ricci tensor with the form(0,2).

Assume an Lorentzian a-Sasakian manifold satisfyingw, = 0; in this case, (2.16) becomes true.
1

R(X,Y,U V)= = [g(Y,U)S(X,V)—g(X,U)S(Y,V)]. (2.17)
Using (2.17)’s X = U = & and (2.9), (2.12), we have
S, V)=a?*(n—1Dg,V). (2.18)

M Is therefore an Einstein manifold.
Once more inserting (2.18) into (2.17), we obtain

R(X,Y,U, V) =a?[g(Y,DgX,V)—g(X,U)g(Y,V)]. (2.19)

Corollary : It is local isometric to the hyperbolic space because a Lorentzian a-Sasakian manifold
satisfying w, = 0 is a space with constant curvature —1

Definition: If a w,-semisymmetric Lorentzian a-Sasakian manifold satisfies

R(X,Y) w, =0, (2.20)

Where the derivation of the tensor algebra for the tangent vectors X and Y at each point on the manifold Is
to be thought of asR(X,Y).

The condition is easily demonstrated for the w,-curvature tensor in a Lorentzian a-Sasakian manifold.

nw,(X,Y)Z) = 0. (2.21)
Theorem 2.1. An Einstein manifolds are w,-semisymmetric Lorentzian a-Sasakian M manifolds.
Proof: As a result ofR(X,Y) - w, = 0, we have
RX,Y)w,(U,V)Z —wy(R(X,Y)U,V)Z —w,(U,R(X,YIV)Z —w,(U,V)R(X,Y)Z = 0. (2.22)
We obtain by entering X = £ in (2.22), then taking the inner product withé

gRE VW, (U,V)Z,§) — gw,(R(E,YIU,V)Z,$)

—g(w,(U,R(E,YIV)Z, &) — g(w(U,VIR(E,Y)Z,§) = 0. (2.23)

In (2.23), we obtain using (2.10).
0=—a’g(Y,wo(U,V)Z)—a? n(w,(U,V)Z)n(Y)—a?g(¥,U)nw, (&, V)Z)
+a?n(Unw,(Y,V)Z) — a?g(Y,VInw, (U, $)Z) + a*n(VIn(w,(U,Y)Z)

—a?g(Y,Z)n(w,(U,V)$) + a’n(Z)n(w,(U,V)Y). (2.24)
When we put (2.21) in (2.24), we get
a’w,(U,V,Z,Y) =0. (2.25)
Considering [(2.16) and (2.25)], it follows that
R(U,V,Z,Y) = (nil) [g(V,Z)S(U,Y) — g(U,Z)S(V,1)]. (2.26)

Using a contract (2.26), we have

SWV,Z)=a*(n—1)gWV,Z). (2.27)
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With reference to (2.17) and (2.27) once more, we obtain

R(WU,V,Z,Y) = a*[g(V,Z)g(U,Y) — g(U,Z)g(V,V)].
(2.26)

Corollary 2.2. The hyperbolic space is locally isometric to a w,-semisymmetric Lorentzian a-
Sasakian

manifold, that is a space with constant curvature of —1.

1. Engaging Lorentzian a-Sasakian Manifolds with B(X,Y) -w, = 0

As stated in the definition of the C-Bouchner curvature tensor B [11]

1
(n+3)

=SX, Zn(YV)§ + S, Zn(X)§ —n(XOn(Z)QY + n(YIn(2)QX]
— D) o (0X, 2)Y — g (Y, 2)pX + 2g(0X, V)pZ] — B2 [g(X, Z)Y —

B(X,Y)Z = R(X,Y)Z +

[S(X,2)Y — S(Y,2)X + g(X,Z)QY — g(Y, 2)QX + S(¢X, Z)pY

(n+3) (n+3)
g(Y,2)X]
+ Gy X 2D(NE = g (v, 2 ()¢ + n(XOn(Z)Y = n(V)n(Z)X].
(3.1)

When X = & in (3.1) is reduced using (2.10) and (2.12),

B(§,Y)Z = Kig(Y,Z)§ + Kon(2)Y + K3S(Y, Z2)8,

3.2)
2 o@D, @4, ® [ .2 21 (-9 (@) _
where K, = [a X nr3) + (n+3) + (n+3)]' Kz = [ @+ 3a (n+3)  (n+3) (n+3)] and K; =
-2
n+3)’
Consider the possibility that in a Lorentzian a-Sasakian manifold
B(X,Y) -w, = 0.
(3.3)

According to this condition,
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BX,Y)w,(U,V)Z — w,(B(X,Y)U,V)Z — w,(U,B(X,Y)V)Z — w,(U,V)B(X,Y)Z = 0.

(3.4
When we enter X = £ in (3.4) and take the inner product with &, we get
5
Utilization (2.21), (3.2) in (3.5), in our case,
0=—-K gV, w,(U,V)Z) — K3S(Y,w,(U,V)Z) — K1 g(Y, Un(w,(§,V)Z)
—K3S(Y, Uyn(w,(§,V)Z) — K1 g(Y, VIn(w, (U, §)Z) — K3S (Y, VIn(w,(U,$)Z)
- K1 g(Y, Z2)n(w,(U,V)$§) — K3S(Y, Z)n(w, (U, V)$).
When we put (2.21) in (3.6), we obtain
0=K,g(Y,w,(U,V)Z) + K3S(Y,w,(U,V)Z).
3.7)
Utilizing [(2.16) and (2.10)] and U = Z = &, we have
S(v,QY) = [’“(”K;;)“Z] 9w,V + [ - Da? - %] S, Y).
(3.8)
The result of this is
QY = a?(n—-1)Y.
(3.9)
This gives us
S, V) =a?*(n—1)g(Y,V).
(3.10)

The following can be said as a result:
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Theorem 3.2. An Einstein manifold isa M thatisa B(X,Y) - w, = 0 satisfying Lorentzian a-
Sasakian

manifold.

2. Engaging Lorentzian a-Sasakian Manifolds with C(X,Y) -w, = 0

As stated in the definition of the Weyl-conformal curvature tensor [5], C

1
CX,Y)Z=R(X,Y)Z - ) [S(Y,Z2)X = S(X,Z2)Y + g(Y,Z)QX — g(X,Z)QY]
r
+ ooy 9 DX — g(X, 2)Y].
4.1)
When X = & in (4.1) is reduced using (2.10) and (2.12),
CE,Y)Z = K{g(Y,2)§ + Ksn(2)Y + KiS(Y, 2)E,
(4.2)
r_ 2 _ 2(71—1) r r_|_,2 Z(Tl—l)_ T r_ -1
where K| = [a a 2 + (n—l)(n—z)]' K; = [ a+2a P (n—l)(n—z)] and K3 = 2
Suppose that in an Lorentzian a-Sasakian manifold manifold
CX,Y) w, =0.
(4.3)
According to this condition,
CX,V)W,(U,V)Z —w,(C(X,Y)U,V)Z — w,(U,C(X,YIV)Z —w,(U,V)C(X,Y)Z = 0.
(4.4)

Using the formula X = £ in the reference equation (4.4) and the inner product with &, we get
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Using (2.21), (4.2) in (4.5), we obtain
0=—-Kig(Y¥,w,(U,V)Z) — K3S(Y,w,(U,V)Z) — K{g(Y, Un(w,(§,V)Z)

—K3S(Y, Uyn(w,(§,V)Z) = Kig(Y, V)n(w, (U, §)Z) — K3S(Y, VIn(w, (U, §)Z)
—Kig(Y,Zn(w,(U,V)§) — K3S(Y, Zn(w, (U, V)E).

By inserting (2.21) into (4.6), we obtain

0= K, g(Y,w,(UV)Z) + KiS(Y,w,(U,V)Z).

Taking U = Z = & and in view of (2.16) and (2.10), we have

Kj(n—-1)a?

sw,Qr) =| Jaw.0) + [ - Da? - Z|sw,1).

4
3

This shows that

QY = a?(n—1)Y.

That generates

S(Y,V)=a?*(n—1)g(Y,V).

The following can be said as a result.

Theorem 4.3. A M Lorentzian a-Sasakian manifold that satisfies the C(X,Y) - w, = 0 condit

is an Einstein manifold.

Engaging Lorentzian a-Sasakian Manifolds with P(X,Y) -w, =0

ion
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The Weyl-projective curvature tensor P is defined as [19]

1

P(X,Y)Z =RX.V)Z ~ =

[S(Y, 2)X — S(X, 2)Y]. (5.1)

When X = £ in (5.1) is reduced using (2.10) and (2.12), it becomes

1
(n-1)

P(§,Y)Z = a?g(Y,Z)¢ — S(Y, Z)E. (5.2)

Now examine the satisfying an Lorentzian a-Sasakian manifold.
P(X,Y) -w, =0. (5.3)

This condition shows that

P(X, V)W, (U, V)Z —wy(P(X,Y)U,V)Z —w, (U, P(X,Y)V)Z — w,(U,V)P(X,Y)Z = 0.

(5.4)
When X = ¢ is entered into (5.4) and the inner product is taken, we get
9P YVIw,(U,V)Z,8) — gw,(P(§, YU, V)Z,§)
55

We obtain using (2.21), (5.2) in (5.5)

1
(n-1)

0=—-a?g(Y,w,(U,V)Z) +

S, w,(U,V)Z) — a?g (Y, Dn(w,(§,V)Z)

1

+ o5 SN2 (E,V)Z) — a?g (Y, VIn(w, (U, )Z) +
g S VW, (U, 6)2)
~a2g(Y, 2wy (U, V)E) + 5 SV, 2w, (U, 1)9).
(5.6)
When we put (2.21) in (5.6), we obtain
0=—a?g(Y,wy(U,V)Z) + (nfl)S(Y, w, (U, V)Z).
(5.7)
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By utilizing (2.16) and (2.10) and U = Z = &, we have

S(WV,QY) =—a*(n—1)?g(V,Y) + 2a?(n— 1SV, Y).

(5.8)
According to this,
QY = a?(n—1)Y,
(5.9)
which results
S(Y,V) =a?(n—-1Dg(,V).
(5.10)
Consequently, we can claim that
Theorem 5.4. Einstein manifolds are Lorentzian a-Sasakian manifolds that meet the equation
P(X,Y) -w, =0.
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