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Abstract 

  The purpose of this work is to introduce Lorentzian 𝛼-Sasakian manifolds to the concept of an 

extended 𝑤2-curvature tensor. This study’s findings include the demonstration of an extended Lorentzian 

𝛼-Sasakian manifold that satisfies certain requirements for the 𝑤2-curvature tensor. First we demonstrated 

that, it is local isometric to the hyperbolic space because a Lorentzian 𝛼-Sasakian manifold satisfying 

𝑤2 = 0 is a space with constant curvature −1. Further, we proved that, Einstein manifolds are 𝑤2-

semisymmetric Lorentzian 𝛼-Sasakian 𝑀 manifolds. Additionally we validated that, the hyperbolic space 

is locally isometric to a 𝑤2-semisymmetric Lorentzian 𝛼-Sasakian manifold, that is a space with constant 

curvature of −1. Additionally, we gathered data on an Einstein manifold is a 𝑀 that is a 𝐵(𝑋, 𝑌) ∙ 𝑤2 = 0 

satisfying Lorentzian 𝛼-Sasakian manifold, a 𝑀 Lorentzian 𝛼-Sasakianmanifold that satisfies the 

𝐶(𝑋, 𝑌) ∙ 𝑤2 = 0 condition is an Einstein manifold and Einstein manifolds are Lorentzian 𝛼-Sasakian 

manifolds that meet the equation𝑃(𝑋, 𝑌) ∙ 𝑤2 = 0. 

Key Words: Lorentzian 𝛼-Sasakian, C-Bouchner curvature tensor, Weyl-conformal curvature tensor,   

Weyl-projective curvature tensor and Einstein manifold. 

 MSC Subject Classification (2000): 53D15, 53C21, 53C25, 53C40.  

Introduction 

Pokhariyal and Mishra [9] introduced the 𝑤2-curvature tensor, a novel type of curvature tensor, in 

a Riemannian manifold in the year 1770 and researched its features. Pokhariyal [10] has also investigated 

some of the characteristics of this curvature tensor in a Sasakian manifold. In P-Sasakian, Kenmotsu and  

Lorentzian para-Sasakian manifolds, 𝑤2-curvature tensor has been explored by Matsumoto, Ianu and 

Mihai [12], Ahmet Yildiz and U.C. De [21] and Venkatesha, C.S. Bagewadi et al [20],  respectively. S. 

Tanno classified associated almost contact metric manifolds with the largest automorphism grou in [17]. 

The sectional curvature of a plane section containing such a manifold is a constant, let’s say 𝑐  He showed 

how they can be classified into three groups:   

Riemannian manifolds with homogeneous normal contact and 𝑐 > 0; 

In the condition that 𝑐 = 0, global Riemannian products of a line or circle with a Kaehler 

Manifold with constant holomorphic sectional curvature; 

If 𝑐 > 0, a warped product space calculated as 𝑅𝑓 × 𝐶. The class (1) manifolds are distinguished by 

admitting a Sasakian structure, as is well known. 

A class of nearly Hermitian manifolds [6],𝑤4, that is strongly connected to locally conformal Kaehler 

manifolds [3] appears in the Gray-Hervella classification of almost Hermitian manifolds. A   trans-

Sasakian structure [16] is a nearly contact metric structure on a manifold 𝑀 if the product manifold 𝑀 ×
𝑅 belongs to the class 𝑤4. The class of the trans-Sasakian structures of (𝛼, 𝛽) 

coincides with the class  𝐶6⨁𝐶5 ([14], [15]). In fact, the local nature of the two subclasses of trans-  

Sasakian structures, namely 𝐶5 and 𝐶6 structures, is fully defined in [15]. We point out that the 

cosymplectic [1],  𝛽-Kenmotsu [8] and 𝛼-Sasakian [8], respectively, are trans-Sasakian structures of type 



LouisSaveinDupuisJ.Multidiscip.Res.2024:3  

 

 
282 

 

(0,0), (0, 𝛽) and (𝛼, 0). It is established in [18] that trans-Sasakian structures are generalized quasi-

Sasakian structures.  As a result, a wide variety of generalized quasi-Sasakian structures are also provided 

by trans-Sasakian structures.  

If 𝑀 × 𝑅 belongs to the class 𝑤4 [6] and 𝐽 is the almost complex structure on 𝑀 × 𝑅 defined by 

 (𝑀 × 𝑅, 𝐽, 𝐺) [16], then the almost contact metric structure (𝜙, 𝜉, 𝜂, 𝑔) on 𝑀 

                                                  𝐽 (𝑋,
𝑓𝑑

𝑑𝑡
) = (𝜙𝑋 − 𝑓,

𝜂(𝑋)𝑑

𝑑𝑡
).                                                  (1.1) 

The product metric on 𝑀 × 𝑅 is 𝐺 for all vector fields 𝑋 on 𝑀 and smooth functions 𝑓 on𝑀 × 𝑅.  

This might be stated using the condition [2] 

                                          (∇𝑋𝜙)𝑌 = 𝛼(𝑔(𝑋, 𝑌) − 𝜂(𝑌)𝑋) + 𝛽(𝑔(𝜙𝑋, 𝑌) − 𝜂(𝑌)𝜙𝑋)),     (1.2) 

 For certain smooth functions (𝛼, 𝛽) and (𝛽, 𝛼) on 𝑀, we say that the trans-Sasakian structure is of type 

(𝛼, 𝛽). A trans-Sasakian structure of type (𝛼, 𝛽) is 𝛼-Sasakian if  𝛽 = 0 and 𝛼 is a non-zero  Constant  

[7].  The 𝛼-Sasakian manifold is a Sasakian manifold if 𝛼 = 1. 

Preliminaries 

 The term”differentiable manifold of dimension 𝑛”.  If it admits a Lorentzian 𝛼-Sasakian 

manifold, a contravariant vector field named𝜉, a (1,1)-tensor field named 𝜙 and a Lorentzian metric 𝑔 

covariant vector field 𝜂 satisfy ([22], [13]) 

                                                                      𝜂(𝜉) = −1,                                                          (2.1) 

                                                                      𝜙  2 = 𝑋 + 𝜂(𝑋)𝜉,                                               (2.2)                

                                                                 𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌),                        (2.3) 

                                                                       𝑔(𝑋, 𝜉) = 𝜂(𝑋),                                                 (2.4) 

                                                                               𝜙𝜉 = 0,              𝜂(𝜙𝑋) = 0,                     (2.5) 

For every 𝑋, 𝑌 ∈ 𝑇𝑀. 

A Lorentzian 𝛼-Sasakian manifold M [4] also satisfies the condition  

                                                                            ∇x𝜉 = −𝛼𝜙𝑋,                                               (2. 6) 

                                                                                 (∇x𝜂)𝑌 = −𝛼𝑔(𝜙𝑋, 𝑌),                                    (2. 7) 

Where the covariant differentiation operator with respect to the Lorentzian metric 𝑔 is denoted by  ∇.  

  The following relations hold on Lorentzian 𝛼-Sasakian manifold 𝑀 as well: 

                                                                   𝑅(𝑋, 𝑌)𝑍 = 𝛼2{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌},                (2.8) 

                                                                   𝑅(𝑋, 𝑌)𝜉 = 𝛼2{𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌},                         (2.9) 

                                                                   𝑅(𝜉, 𝑋)𝑌 = 𝛼2{𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋},                     (2.10) 

                                                                   𝑅(𝜉, 𝑋)𝜉 = 𝛼2{𝜂(𝑋)𝜉 + 𝑋},                                  (2.11) 

                                                                    𝑆(𝑋, 𝜉) = (𝑛 − 1)𝛼2𝜂(𝑋),                                   (2.12) 

                                                                    𝑄𝜉 = (𝑛 − 1)𝛼2𝜉,                                                (2.13) 

                                                                 𝑆(𝜙𝑋, 𝜙𝑌) = 𝑆(𝑋, 𝑌) + (𝑛 − 1)𝛼2𝜂(𝑋)𝜂(𝑌),       (2.14)   

Where 𝑆 is the Ricci tensor and 𝑄 is the Ricci operator provided by, for any vector fields 𝑋, 𝑌 and  𝑍.    

                                                                       𝑆(𝑋, 𝑌) = 𝛼𝑔(𝑋, 𝑌),                                          (2.15) 

Any vector field  𝑋, any vector field 𝑌 and 𝛼 is a function on 𝑀. 

The definition of the curvature tensor 𝑤2 by Pokhariyal and Mishra [9] is given in the 

        𝑤2(𝑋, 𝑌, 𝑈, 𝑉) = 𝑅(𝑋, 𝑌, 𝑈, 𝑉) +
1

(𝑛−1)
[𝑔(𝑋, 𝑈)𝑆(𝑌, 𝑉) − 𝑔(𝑌, 𝑈)𝑆(𝑋, 𝑉)],                 (2.16) 
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Where 𝑆 is a Ricci tensor with the form(0,2). 

Assume an Lorentzian 𝛼-Sasakian manifold satisfying𝑤2 = 0; in this case, (2.16) becomes true. 

                        𝑅(𝑋, 𝑌, 𝑈, 𝑉) =
1

(𝑛−1)
[𝑔(𝑌, 𝑈)𝑆(𝑋, 𝑉) − 𝑔(𝑋, 𝑈)𝑆(𝑌, 𝑉)].                                (2.17) 

Using (2.17)’s 𝑋 = 𝑈 = 𝜉 and (2.9), (2.12), we have  

                                            𝑆(𝑌, 𝑉 ) = 𝛼2(𝑛 − 1)𝑔(𝑌, 𝑉 ).                                                          (2.18) 

  𝑀 Is therefore an Einstein manifold. 

 Once more inserting (2.18) into (2.17), we obtain 

 

                       𝑅(𝑋, 𝑌, 𝑈, 𝑉) = 𝛼2[𝑔(𝑌, 𝑈)𝑔(𝑋, 𝑉) − 𝑔(𝑋, 𝑈)𝑔(𝑌, 𝑉)].                                  (2.19) 

Corollary : It is local isometric to the hyperbolic space because a Lorentzian 𝛼-Sasakian manifold    

satisfying 𝑤2 = 0 is a space with constant curvature −1 

Definition: If a 𝑤2-semisymmetric Lorentzian 𝛼-Sasakian manifold satisfies 

 

                                     𝑅(𝑋, 𝑌) ∙ 𝑤2 = 0,                                                                                 (2.20) 

Where the derivation of the tensor algebra for the tangent vectors 𝑋 and 𝑌 at each point on the manifold Is 

to be thought of as𝑅(𝑋, 𝑌).      

The condition is easily demonstrated for the 𝑤2-curvature tensor in a Lorentzian 𝛼-Sasakian manifold. 

 

                                     𝜂(𝑤2(𝑋, 𝑌)𝑍) = 0.                                                                              (2.21) 

Theorem 2.1. An Einstein manifolds are 𝑤2-semisymmetric Lorentzian 𝛼-Sasakian 𝑀 manifolds. 

Proof: As a result of𝑅(𝑋, 𝑌) ∙ 𝑤2 = 0, we have 

𝑅(𝑋, 𝑌)𝑤2(𝑈, 𝑉)𝑍 − 𝑤2(𝑅(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑤2(𝑈, 𝑅(𝑋, 𝑌)𝑉)𝑍 − 𝑤2(𝑈, 𝑉)𝑅(𝑋, 𝑌)𝑍 = 0.   (2.22) 

We obtain by entering 𝑋 = 𝜉 in (2.22), then taking the inner product with𝜉 

𝑔(𝑅(𝜉, 𝑌)𝑤2(𝑈, 𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝑅(𝜉, 𝑌)𝑈, 𝑉)𝑍, 𝜉) 

                                    −𝑔(𝑤2(𝑈, 𝑅(𝜉, 𝑌)𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝑈, 𝑉)𝑅(𝜉, 𝑌)𝑍, 𝜉) = 0.                (2.23) 

 In (2.23), we obtain using (2.10). 

0 = −𝛼2𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍)−𝛼2 𝜂(𝑤2(𝑈, 𝑉)𝑍)𝜂(𝑌)−𝛼2𝑔(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) 

                              +𝛼2𝜂(𝑈)𝜂(𝑤2(𝑌, 𝑉)𝑍) − 𝛼2𝑔(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) + 𝛼2𝜂(𝑉)𝜂(𝑤2(𝑈, 𝑌)𝑍) 

                              −𝛼2𝑔(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉) + 𝛼2𝜂(𝑍)𝜂(𝑤2(𝑈, 𝑉)𝑌).                                (2.24) 

 When we put (2.21) in (2.24), we get 

                                           𝛼2 𝑤2(𝑈, 𝑉, 𝑍, 𝑌) = 0.                                                                  (2.25) 

 Considering [(2.16) and (2.25)], it follows that 

                     𝑅(𝑈, 𝑉, 𝑍, 𝑌) =
1

(𝑛−1)
[𝑔(𝑉, 𝑍)𝑆(𝑈, 𝑌) − 𝑔(𝑈, 𝑍)𝑆(𝑉, 𝑌)].                               (2.26) 

 Using a contract (2.26), we have 

                                     

 

  𝑆(𝑉, 𝑍 ) = 𝛼2(𝑛 − 1)𝑔(𝑉, 𝑍 ).                                                          (2.27) 
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               With reference to (2.17) and (2.27) once more, we obtain 

 

                                                   𝑅(𝑈, 𝑉, 𝑍, 𝑌) = 𝛼2[𝑔(𝑉, 𝑍)𝑔(𝑈, 𝑌) − 𝑔(𝑈, 𝑍)𝑔(𝑉, 𝑌)].                                 
(2.26) 

 

 

               Corollary 2.2. The hyperbolic space is locally isometric to a 𝑤2-semisymmetric Lorentzian 𝛼-

Sasakian  

               manifold, that is a space with constant curvature of −1. 

 

1. Engaging Lorentzian 𝜶-Sasakian Manifolds with 𝑩(𝑿, 𝒀) ∙ 𝒘𝟐 = 𝟎 

 

 

                As stated in the definition of the C-Bouchner curvature tensor B [11] 

 

               𝐵(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 +
1

(𝑛+3)
[𝑆(𝑋, 𝑍)𝑌 − 𝑆(𝑌, 𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝑄𝑌 − 𝑔(𝑌, 𝑍)𝑄𝑋 + 𝑆(𝜙𝑋, 𝑍)𝜙𝑌 

                                −𝑆(𝜙𝑌, 𝑍)𝜙𝑋 + 𝑔(𝜙𝑋, 𝑍)𝑄𝜙𝑌 − 𝑔(𝜙𝑌, 𝑍)𝑄𝜙𝑋 + 2𝑆(𝜙𝑋, 𝑍)𝜙𝑌 + 2𝑔(𝜙𝑋, 𝑌)𝑄𝜙𝑍 

                                −𝑆(𝑋, 𝑍)𝜂(𝑌)𝜉 + 𝑆(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝜂(𝑋)𝜂(𝑍)𝑄𝑌 + 𝜂(𝑌)𝜂(𝑍)𝑄𝑋] 

                                −
(𝑝+𝑛−1)

(𝑛+3)
[𝑔(𝜙𝑋, 𝑍)𝜙𝑌 − 𝑔(𝜙𝑌, 𝑍)𝜙𝑋 + 2𝑔(𝜙𝑋, 𝑌)𝜙𝑍] −

(𝑝−4)

(𝑛+3)
[𝑔(𝑋, 𝑍)𝑌 −

𝑔(𝑌, 𝑍)𝑋] 

                               +
𝑝

(𝑛+3)
[𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋].                               

(3.1)  

 

               When 𝑋 = 𝜉 in (3.1) is reduced using (2.10) and (2.12), 

 

                                        𝐵(𝜉, 𝑌)𝑍 = 𝐾1𝑔(𝑌, 𝑍)𝜉 + 𝐾2𝜂(𝑍)𝑌 + 𝐾3𝑆(𝑌, 𝑍)𝜉,                                                     

(3.2) 

 

               where 𝐾1 = [𝛼2 − 𝛼2 (𝑛−1)

(𝑛+3)
+

(𝑝−4)

(𝑛+3)
+

(𝑝)

(𝑛+3)
], 𝐾2 = [−𝛼2 + 3𝛼2 (𝑛−1)

(𝑛+3)
−

(𝑝−4)

(𝑛+3)
−

(𝑝)

(𝑛+3)
] and 𝐾3 =

−2

(𝑛+3)
. 

                

               Consider the possibility that in a Lorentzian 𝛼-Sasakian manifold 

 

                                                                         𝐵(𝑋, 𝑌) ∙ 𝑤2 = 0.                                                                         

(3.3) 

                

               According to this condition, 
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                       𝐵(𝑋, 𝑌)𝑤2(𝑈, 𝑉)𝑍 − 𝑤2(𝐵(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑤2(𝑈, 𝐵(𝑋, 𝑌)𝑉)𝑍 − 𝑤2(𝑈, 𝑉)𝐵(𝑋, 𝑌)𝑍 = 0.         

(3.4) 

 

               When we enter 𝑋 = 𝜉 in (3.4) and take the inner product with 𝜉, we get 

 

𝑔(𝐵(𝜉, 𝑌)𝑤2(𝑈, 𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝐵(𝜉, 𝑌)𝑈, 𝑉)𝑍, 𝜉) 

                                                 −𝑔(𝑤2(𝑈, 𝐵(𝜉, 𝑌)𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝑈, 𝑉)𝐵(𝜉, 𝑌)𝑍, 𝜉) = 0.                                

(3.5) 

 

               Utilization (2.21), (3.2) in (3.5), in our case, 

 

                             0 = −𝐾1𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍) − 𝐾3𝑆(𝑌, 𝑤2(𝑈, 𝑉)𝑍) − 𝐾1𝑔(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) 

                                    −𝐾3𝑆(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) − 𝐾1𝑔(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) − 𝐾3𝑆(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) 

                                    −𝐾1𝑔(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉) − 𝐾3𝑆(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉).                                                    

(3.6) 

             

               When we put (2.21) in (3.6), we obtain 

 

                                                0 = 𝐾1𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍) + 𝐾3𝑆(𝑌, 𝑤2(𝑈, 𝑉)𝑍).                                                   

(3.7) 

 

               Utilizing [(2.16) and (2.10)] and 𝑈 = 𝑍 = 𝜉, we have 

 

 

                                  𝑆(𝑉, 𝑄𝑌 ) = [
𝐾1(𝑛−1)𝛼2

𝐾3
] 𝑔(𝑉, 𝑌) + [(𝑛 − 1)𝛼2 −

𝐾1

𝐾3
] 𝑆(𝑉, 𝑌).                                          

(3.8) 

 

               The result of this is 

  

                                                                       𝑄𝑌 = 𝛼2(𝑛 − 1)𝑌.                                                                         

(3.9) 

 

               This gives us 

 

                                                           𝑆(𝑌, 𝑉) = 𝛼2(𝑛 − 1)𝑔(𝑌, 𝑉).                                                                  

(3.10) 

 

               The following can be said as a result: 
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              Theorem 3.2. An Einstein manifold is a M that is a 𝐵(𝑋, 𝑌) ∙ 𝑤2 = 0 satisfying Lorentzian 𝛼-

Sasakian 

               manifold. 

 

 

 

 

 

 

 

 

2. Engaging Lorentzian 𝜶-Sasakian Manifolds with 𝐂(𝑿, 𝒀) ∙ 𝒘𝟐 = 𝟎 

 

               As stated in the definition of the Weyl-conformal curvature tensor [5], C 

 

𝐶(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

(𝑛 − 2)
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] 

                                        +
𝑟

(𝑛−1)(𝑛−2)
[𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌].                                                                             

(4.1) 

 

               When 𝑋 = 𝜉 in (4.1) is reduced using (2.10) and (2.12), 

 

                                        𝐶(𝜉, 𝑌)𝑍 = 𝐾1
′𝑔(𝑌, 𝑍)𝜉 + 𝐾2

′𝜂(𝑍)𝑌 + 𝐾3
′𝑆(𝑌, 𝑍)𝜉,                                                     

(4.2) 

 

               where 𝐾1
′ = [𝛼2 − 𝛼2 (𝑛−1)

(𝑛−2)
+

𝑟

(𝑛−1)(𝑛−2)
], 𝐾2

′ = [−𝛼2 + 2𝛼2 (𝑛−1)

(𝑛−2)
−

𝑟

(𝑛−1)(𝑛−2)
] and 𝐾3

′ =
−1

(𝑛−2)
. 

 

 

               Suppose that in an Lorentzian 𝛼-Sasakian manifold manifold 

 

                                                                         𝐶(𝑋, 𝑌) ∙ 𝑤2 = 0.                                                                          

(4.3) 

 

               According to this condition, 

 

                     𝐶(𝑋, 𝑌)𝑤2(𝑈, 𝑉)𝑍 − 𝑤2(𝐶(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑤2(𝑈, 𝐶(𝑋, 𝑌)𝑉)𝑍 − 𝑤2(𝑈, 𝑉)𝐶(𝑋, 𝑌)𝑍 = 0.         

(4.4) 

 

               Using the formula 𝑋 = 𝜉 in the reference equation (4.4) and the inner product with 𝜉, we get 
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𝑔(𝐶(𝜉, 𝑌)𝑤2(𝑈, 𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝐶(𝜉, 𝑌)𝑈, 𝑉)𝑍, 𝜉) 

                                                 −𝑔(𝑤2(𝑈, 𝐶(𝜉, 𝑌)𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝑈, 𝑉)𝐶(𝜉, 𝑌)𝑍, 𝜉) = 0.                                

(4.5) 

 

               Using (2.21), (4.2) in (4.5), we obtain 

 

                             0 = −𝐾1
′𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍) − 𝐾3

′𝑆(𝑌, 𝑤2(𝑈, 𝑉)𝑍) − 𝐾1
′𝑔(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) 

                                    −𝐾3
′𝑆(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) − 𝐾1

′𝑔(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) − 𝐾3
′𝑆(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) 

                                    −𝐾1
′𝑔(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉) − 𝐾3

′𝑆(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉).                                                    

(4.6) 

             

               By inserting (2.21) into (4.6), we obtain 

 

                                                     0 = 𝐾1
′𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍) + 𝐾3

′𝑆(𝑌, 𝑤2(𝑈, 𝑉)𝑍).                                              

(4.7) 

 

               Taking 𝑈 = 𝑍 = 𝜉 and in view of (2.16) and (2.10), we have       

 

                                 𝑆(𝑉, 𝑄𝑌 ) = [
𝐾1

′ (𝑛−1)𝛼2

𝐾3
′ ] 𝑔(𝑉, 𝑌) + [(𝑛 − 1)𝛼2 −

𝐾1
′

𝐾3
′] 𝑆(𝑉, 𝑌).                                          

(4.8) 

                   

               This shows that 

 

                                                                       𝑄𝑌 = 𝛼2(𝑛 − 1)𝑌.                                                                         

(4.9) 

 

               That generates 

 

                                                           𝑆(𝑌, 𝑉) = 𝛼2(𝑛 − 1)𝑔(𝑌, 𝑉).                                                                  

(4.10) 

  

               The following can be said as a result. 

 

               Theorem 4.3. A M Lorentzian 𝛼-Sasakian manifold that satisfies the 𝐶(𝑋, 𝑌) ∙ 𝑤2 = 0 condition 

               is an Einstein manifold. 

 

 

 

3. Engaging Lorentzian 𝜶-Sasakian Manifolds with 𝑷(𝑿, 𝒀) ∙ 𝒘𝟐 = 𝟎 
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               The Weyl-projective curvature tensor P is defined as [19] 

 

                                𝑃(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

(𝑛−1)
[𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌].                                     (5.1) 

 

               When 𝑋 = 𝜉 in (5.1) is reduced using (2.10) and (2.12), it becomes 

 

                                𝑃(𝜉, 𝑌)𝑍 = 𝛼2𝑔(𝑌, 𝑍)𝜉 −
1

(𝑛−1)
𝑆(𝑌, 𝑍)𝜉.                                                        (5.2) 

 

               Now examine the satisfying an Lorentzian 𝛼-Sasakian manifold. 

 

                                                       𝑃(𝑋, 𝑌) ∙ 𝑤2 = 0.                                                                       (5.3) 

 

               This condition shows that 

 

                   𝑃(𝑋, 𝑌)𝑤2(𝑈, 𝑉)𝑍 − 𝑤2(𝑃(𝑋, 𝑌)𝑈, 𝑉)𝑍 − 𝑤2(𝑈, 𝑃(𝑋, 𝑌)𝑉)𝑍 − 𝑤2(𝑈, 𝑉)𝑃(𝑋, 𝑌)𝑍 = 0.              

(5.4) 

 

               When 𝑋 = 𝜉 is entered into (5.4) and the inner product is taken, we get 

 

𝑔(𝑃(𝜉, 𝑌)𝑤2(𝑈, 𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝑃(𝜉, 𝑌)𝑈, 𝑉)𝑍, 𝜉) 

                                                 −𝑔(𝑤2(𝑈, 𝑃(𝜉, 𝑌)𝑉)𝑍, 𝜉) − 𝑔(𝑤2(𝑈, 𝑉)𝑃(𝜉, 𝑌)𝑍, 𝜉) = 0.                                

(5.5) 

 

               We obtain using (2.21), (5.2) in (5.5) 

 

                             0 = −𝛼2𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍) +
1

(𝑛−1)
𝑆(𝑌, 𝑤2(𝑈, 𝑉)𝑍) − 𝛼2𝑔(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) 

                                    +
1

(𝑛−1)
𝑆(𝑌, 𝑈)𝜂(𝑤2(𝜉, 𝑉)𝑍) − 𝛼2𝑔(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) +

1

(𝑛−1)
𝑆(𝑌, 𝑉)𝜂(𝑤2(𝑈, 𝜉)𝑍) 

                                   −𝛼2𝑔(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉) +
1

(𝑛−1)
𝑆(𝑌, 𝑍)𝜂(𝑤2(𝑈, 𝑉)𝜉).                                                 

(5.6) 

 

               When we put (2.21) in (5.6), we obtain 

 

                                                        0 = −𝛼2𝑔(𝑌, 𝑤2(𝑈, 𝑉)𝑍) +
1

(𝑛−1)
𝑆(𝑌, 𝑤2(𝑈, 𝑉)𝑍).                                    

(5.7) 
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               By utilizing (2.16) and (2.10) and 𝑈 = 𝑍 = 𝜉, we have 

 

                                        𝑆(𝑉, 𝑄𝑌 ) = −𝛼4(𝑛 − 1)2𝑔(𝑉, 𝑌) + 2𝛼2(𝑛 − 1)𝑆(𝑉, 𝑌).                                          

(5.8) 

 

               According to this,                                  

                                       

                                                                   𝑄𝑌 = 𝛼2(𝑛 − 1)𝑌,                                                                            

(5.9) 

 

               which results 

  

                                                           𝑆(𝑌, 𝑉) = 𝛼2(𝑛 − 1)𝑔(𝑌, 𝑉).                                                                  

(5.10) 

 

               Consequently, we can claim that 

 

 

                Theorem 5.4. Einstein manifolds are Lorentzian 𝛼-Sasakian manifolds that meet the equation 

                𝑃(𝑋, 𝑌) ∙ 𝑤2 = 0.  
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